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SUMMARY

We study the evolution of age at maturity in a semelparous life history with two age classes. An
individual may either breed in the first year of its life and die, or delay breeding to the second year.
In this setting a mixed strategy means that a fraction of the individual’s offspring breed in the first
possible breeding event, while the remaining fraction delay breeding. Current theory seems to imply
that mixed strategies are not evolutionarily stable strategies (ESSs) under a steady-state population
dynamical regime. We show that a two-dimensional feedback environment may allow the evolution of
mixed age at maturity. Furthermore, different phenotypes need to perceive the environment differently.
The biological reasoning behind these conditions is different resource usage or predation pressure
between two age classes. Thus, the conventional explanations for the occurrence of mixed strategies
in natural populations, environmental stochasticity or complex dynamics, are not needed.

1. INTRODUCTION

Life history theory is concerned with finding life his-
tories that are favoured by natural selection. The as-
sumed end points of selection are considered to be
‘optimal’ in an evolutionary sense. Until recently, the
standard procedure in determining optimal life his-
tories was to assume that evolution maximizes some
density independent fitness ‘measure’ (Roff 1992;
Stearns 1992). The most common measures used are
expected lifetime fecundity (or basic reproductive
number) R0, and intrinsic rate of increase (or pop-
ulation growth rate) r, defined by the Euler–Lotka
equation. Other paradigms also exist, including evo-

lutionarily stable strategies (ESS, Maynard Smith
& Price 1973) based on an invasion criterion (e.g.
Metz et al. 1992). It has been puzzling, when maxi-
mizing a density-independent fitness measure is con-
sistent with the theoretically sounder ESS concept.
This problem was attacked by Mylius & Diekmann
(1995) and later elaborated by Metz et al. (1996)
who showed that the fitness maximization approach
is restricted to one-dimensional environments, the
specific optimization criterion depending on further
details of the environmental feedback. The ‘environ-
ment’ here refers to the feedback environment, i.e.
the environment as it occurs in the equations for
the population state. Usually the feedback loop is
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assumed to be direct, i.e. this environment can be
considered as a function of population state. The di-
mension of the environment refers here to the number
of scalars needed to describe the environmental con-
dition, as it appears in the environmental feedback
loop. This dimensionality is essentially a mathemat-
ical property: it does not refer directly to reality, but
rather to the way reality is described in the particular
model.

The adherence to simple maximization tools—and
to one-dimensional environments in particular—has
restrained the development of life history theory. The
ESS concept is not restricted to one-dimensional en-
vironments, although the great majority of ESS life
history studies are restricted to this special case!
Sticking to one-dimensional environments rules out
the possibility of frequency-dependent selection, if
density dependence is accounted for. Consequently,
in one-dimensional constant environments, we can
expect to find only a single phenotype value to be
optimal. However, under frequency-dependent selec-
tion, which requires the environment to be at least
two-dimensional, mixed strategies become feasible.

By frequency-dependent selection we refer to a
type of selection in which the fitness of a pheno-
type depends on its frequency in the population in
such a way that a phenotype gains advantage when
its frequency decreases (i.e. negative frequency de-
pendence, see Gromko 1977). This usage is common
in life history theory and behavioural ecology, but
broader usages are found in some other branches of
evolutionary biology.

We adopt the terminology promoted by Eshel
(1996, cf. also Geritz et al. 1997): an ESS, when
common, is unbeatable, or immune, against invasion
of any alternative strategy (Maynard Smith & Price
1973; for a rigid definition, see Eshel 1996). If a strat-
egy is also evolutionarily attractive, i.e. convergent
stable, it is referred to as a continuously stable strat-
egy (CSS). Finally, we refer to a strategy that is an
ESS but not convergent stable as an evolutionarily
stable repeller (ESR).

In this paper, we study the evolution of a poly-
morphic, or mixed, age at maturity within the sim-
plest possible scenario of a semelparous life cycle with
two age classes. A polymorphic age at maturity may
indicate that the underlying population strategy is
mixed, that is, the strategy is to mature at a cer-
tain age i with probability γi. A wide range of or-
ganisms possess a life cycle which qualitatively fits
the pattern studied here, including opossum shrimps
(Hakala 1979; Morgan 1980), Pacific salmon (Kaitala
& Getz 1995) and several monocarpic plants (De
Jong et al. 1987). Often environmental stochastic-
ity or fluctuations are invoked to explain the evolu-
tion of mixed life history strategies (Kisdi & Meszéna
1993; Bulmer 1994). Another possibility is that fluc-
tuations are inherent in the population dynamics:
non-equilibrium dynamics, for example, may favour
mixed strategies (Getz & Kaitala 1993; Van Dooren
& Metz 1997). In both cases, a mixed maturation
strategy can be seen to represent a bet-hedging strat-
egy. In this paper we show that mixed maturation

N2 N1

f1γ

s1(1–γ)

newborns

f2

s0

Figure 1. Schematic representation of semelparous life
history with two age classes studied in this paper. The
strategy γ controls the fraction of phenotypes breeding
at the end of their first year of life: fi is age-specific fe-
cundity; si is age-specific survival probability.

strategies may evolve under a steady-state popula-
tion dynamical regime if selection is frequency de-
pendent. Thus, our theory clearly demonstrates the
crucial importance of considering multidimensional
feedback environments in the population dynamics.

The paper is composed as follows. In § 2 the popu-
lation dynamical model is introduced. Adaptive dy-
namics in a one-dimensional environment is briefly
treated in § 3. Our main results for multidimensional
environments are presented in § 4. The paper con-
cludes with a discussion (§ 5).

2. POPULATION DYNAMICS

Consider a following general life cycle for a semel-
parous organism with two age classes, N1 and N2
(figure 1). The population census takes place just be-
fore breeding. The two age classes have age-specific
fecundities f̃1 and f̃2. Here a tilde denotes the param-
eters which may be influenced by the environmental
condition. However, only a fraction γ, 0 6 γ 6 1,
of age class one breed, while the others delay their
breeding. Those which delay have a probability s̃1 to
survive to the next breeding season. Thus, the adult
population gives birth to f̃1γN1 + f̃2N2 offspring,
which survive to age one with probability s̃0. By def-
inition, all animals die after breeding. The age class
dynamics are given by the following equations:

N1(t+ 1) = s̃0f̃1γN1(t) + s̃0f̃2N2(t), (1)
N2(t+ 1) = s̃1(1− γ)N1(t), (2)

in which any of the parameters may be affected by
density dependence. It is reasonable to assume that
both phenotypes are viable if there is no density de-
pendence: s̃0f̃1 > 1 and s̃0s̃1f̃2 > 1 in the virgin en-
vironment.

The expected lifetime fecundity (or basic repro-
ductive number) R0 is given by

R0(γ,E) = s̃0f̃1γ + s̃0s̃1f̃2(1− γ)

= s̃0s̃1f̃2 + γs̃0(f̃1 − s̃1f̃2), (3)

where E denotes the condition of feedback environ-
ment. The intrinsic rate of increase r (i.e. the popu-
lation growth rate which would ensue under constant
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environmental conditions) can be solved explicitly
from the Euler–Lotka equation:

r(γ,E)

=



ln(s̃0f̃1), if γ = 1,

ln
2s̃0s̃1f̃2(1− γ)

−s̃0f̃1γ +
√

(s̃0f̃1γ)2 + 4s̃0s̃1f̃2(1− γ)
,

otherwise.
(4)

3. CONSTANT ONE-DIMENSIONAL
ENVIRONMENTS

(a) General theory

We say that the environment is one dimensional, if
all the relevant information on the environment can
be characterized by a single scalar E. Let Eγ denote a
steady-state environment created by a monomorphic
population playing strategy γ.

Assume now that the population dynamics reaches
a point equilibrium state, in which necessarily R0 =
1. According to the pessimization principle of Mylius
& Diekmann (1995), the strategy which survives
under the worst environmental conditions, is an
ESS. The expected lifetime fecundities of the pure
strategies are R0(0, E) = s̃0s̃1f̃2 and R0(1, E) =
s̃0f̃1. From equation (3) it follows that the expected
lifetime fecundity of a mixed strategy γ ∈ ]0, 1[
will never exceed that of the pure strategy having
the higher expected lifetime fecundity. Only when
R0(0, E0) = R0(1, E1), a mixed strategy will have an
equal fitness to both pure strategies. However, any
population strategy is then an ESS, but lacks con-
vergence stability. Hence, no population strategy is
a CSS.

Result 1. In constant, one-dimensional environ-
ments mixed CSSs are not possible.

It can be shown that this result is robust, since
it still holds true in the great majority of cases, if
the feedback environment is actually high dimen-
sional, but restricted to a narrow tube around a one-
dimensional curve (Appendix 1).

(b) Fitness maximization

The case of a one-dimensional environment con-
tains two examples of special interest, as they pro-
vide a link to the methodology of the bulk of earlier
life history theory. In these cases the maximization
of density independent optimization criterion, either
the expected lifetime fecundity or the intrinsic rate
of increase, is valid in a density-dependent context
(Mylius & Diekmann 1995; Metz et al. 1996).

First, density dependence affects fecundity (f1 and
f2) and/or new born survival (s0), in such a man-
ner that the basic reproductive number can be writ-
ten as R0(γ,E) = ν(E)s0[f1γ + s1f2(1 − γ)], where
ν(E) is a decreasing function of the environmental
condition E and ν(EV) = 1. EV is the virgin en-
vironment with no detrimental effects from density

dependence. The environmental condition E is as-
sumed to increase with increasing population den-
sity, i.e. crowding. Note that the parameters s0, s1,
f1 and f2 reflect the situation in a virgin environ-
ment. According to result 1 of Mylius & Diekmann
(1995), a strategy γ which maximizes the R0(γ,EV)
is an ESS. Thus,

γ∗ =
{

1, if f1 > s1f2,
0, if f1 < s1f2.

When f1 = s1f2, any γ is an ESS in a sense that all
mutants will have zero growth rate in an environment
set by the resident strategy. However, for the same
reason no strategy is a CSS.

The second case is that survival (s0 and s1) is den-
sity dependent in such way that si(E) = ν(E)si(EV),
i = 0, 1, where ν(E) is some decreasing function of
environmental condition. Then a strategy γ which
maximizes r(γ,EV) is an ESS (Mylius & Diekmann
1995). We may now write

γ∗ =
{

1, if (s0f1)2 > s0s1f2,
0, if (s0f1)2 < s0s1f2.

In the special case that (s0f1)2 = s0s1f2, r(γ,EV) is
independent of γ, and all strategies are evolutionarily
unbeatable, but no strategy is a CSS.

4. CONSTANT MULTIDIMENSIONAL
ENVIRONMENTS

(a) General theory

We consider the feedback environment to be n-
dimensional if n scalars are needed to provide the
relevant information on the environmental time se-
ries which, together with the population dynamical
equations (1)–(2), determines the state of the pop-
ulation one time step further. Moreover, we assume
that the feedback environment depends in some, as
yet unspecified, way on N1 and N2. We also assume
that for all γ the population dynamics necessarily
converges to a stable point equilibrium. Therefore,
we can restrict ourselves to n = 2, without loss of
generality. We denote the two-dimensional environ-
ment as a vector E := (E1, E2) ∈ R2. Finally, we
restrict to cases in which: (i) for every strategy γ the
unique globally stable population dynamical equilib-
rium (N̂1, N̂2) has different values for different γ; and
(ii) there exists a mapping (N̂1, N̂2) 7→ (Ê1, Ê2), with
again (Ê1, Ê2) different whenever (N̂1, N̂2) is differ-
ent. Conditions (i) and (ii) imply that there exists
an inverse mapping sending any feasible condition
(Ê1, Ê2) to a value γ.

For our argument it is essential that the two phe-
notypes experience the environmental feedback, or
density dependence, in different ways. We assume
density-dependent survival rates (s0 and s1), which
obviously satisfies the above assumption. We include
density dependence explicitly in the formula of R0:

R0(γ,E) = ν(E)s0f1γ + ν(E)s0µ(E)s1f2(1− γ)
= ν(E)s0µ(E)s1f2

+ γν(E)s0(f1 − µ(E)s1f2), (5)
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where ν(E) and µ(E) are functions representing ef-
fects of density dependence, which we assume to be
smooth, positive and decreasing in both E1 and E2,
and such that the population dynamics converges
to a stable point equilibrium. Necessarily ν(EV) =
µ(EV) = 1.

If a mixed ESS γ∗ exists, any rare mutant ar-
riving into a monomorphic resident population will
have zero growth rate. In particular, R0(0,Eγ∗) =
R0(1,Eγ∗), which can be rewritten as

f1 = µ(Eγ∗)s1f2. (6)

Equation (6) can hold true only if s1f2 > f1—a nec-
essary condition for the existence of a mixed ESS.
Note for further reference that any E in which the
reproductive number of all different phenotypes are
equal satisfies equation (6), even if this E is not an
environment corresponding to a population dynam-
ical equilibrium. Sticking to population dynamical
equilibria, we necessarily have R0(1,Eγ∗) = 1, which
expands to

ν(Eγ∗)s0f1 = 1. (7)

If equations (6)–(7) have a common solution corre-
sponding to a γ ∈ ]0, 1[, then a mixed strategy is an
ESS.

Next we consider the evolutionary attractivity of
such mixed ESSs. The problem is to characterize
adaptive dynamics in population dynamical equili-
brium points (Ê1, Ê2) close to Eγ∗ . For that task
we should know the fate of rare mutants enter-
ing monomorphic equilibrium populations. These
monomorphic equilibrium populations define a curve
R0(γ, Êγ) = 1 inR2. The endpoints of this curve cor-
respond to monomorphic populations playing pure
strategies.

By replacing Eγ∗ with any E, equation (6) defines
a curve:

m := {(x, y)|µ(x, y)s1f2 − f1 = 0, x ∈ E1, y ∈ E2},
which is an isovalue contour on which all rare mu-
tants arriving into the population have equal repro-
ductive numbers. In a similar manner, equation (7)
defines a unity reproductive number contour for the
non-delaying strategy (γ = 1),

n := {(x, y)|ν(x, y)s0f1 = 1, x ∈ E1, y ∈ E2}.
We assume that m and n can be regarded as the
graphs of two functions, which we shall also denote
as m : E1 7→ E2, n : E1 7→ E2.

The equilibrium points (Ê1, Ê2) must lie between
the curves m and n. The argument is as follows (see
figure 2): if E2 < m(E1), µ(x, y)s1f2 > f1, which
means (remember equation (5)) that the delaying
phenotype (γ = 0) has higher reproductive num-
ber than the non-delayer (γ = 1). If E2 < n(E1),
ν(x, y)s0f1 > 1 and non-delayers have a reproduc-
tive number greater than one. Thus, below m and n
the population size will grow, whatever the strategy
is. In a similar manner, above both m and n, the non-
delayers have smaller reproductive number than the
delayers, which have negative growth rate. So we are
confident that the isovalue contour for R0(0,E) = 1

E2

E1

n:R0(1, E) = 1

R0(0, E) = 1

R0(γ, Eγ) = 1

CSS

CSS

ESR

m:R0(i, E) = R0( j, E)

Figure 2. The adaptive dynamics depends on how the
isovalue contours m and n are situated relative to each
other. The delaying phenotype (γ = 1) has a unity re-
productive number on curve n. On curve m all pheno-
types have equal reproductive numbers. The monomor-
phic equilibrium populations are on the dotted curve; the
narrow arrows symbolically represent the movement of E
towards its equilibrium value. Following the numbering
convention, the right endpoint of the curve corresponds
to population strategy γ = 1. This curve is known to lie
between isovalue contours m and n. The arrows on the
dotted equilibrium curve depict the direction of steps of
the adaptive dynamics. A point in environmental state
space (E1, E2) where the curves intersect corresponds to
an ESS. If n crosses m from above, it is a continuously
stable strategy (CSS), otherwise it is an ESS lacking con-
vergence stability, i.e. an evolutionarily stable repeller
(ESR).

of delayers (γ = 0), lies between the curves m and
n. Furthermore, the equilibrium points (Ê1, Ê2) in
which R0(γ, Êγ) = 1, must lie between n and the iso-
value contour R0(0,E) = 1.

Consider a monomorphic population with strategy
γ, with associated equilibrium point Êγ . If the unity
reproductive number contour n lies above Êγ (in that
case necessarily the curve m and unity reproductive
number contour for γ = 0 lie below Êγ), a mutant
with γ′ > γ can increase in numbers, while a mutant
with γ′ < γ will vanish. Thus, the population strat-
egy will increase until either the curves m and n cross
each other, or γ = 1 is reached. These end results
correspond to a mixed and a pure ESS, respectively.
These ESSs are, moreover, CSSs. The opposite dy-
namics occurs, if Êγ lies above n and below m. Thus,
the number and the attractivity of ESSs depends on
the pattern of crossings of m and n. However, we can-
not simply say that, for example, an intersection in
which n crosses m from above to below corresponds
to a mixed CSS, or to an ERS, as the graphical con-
cepts ‘above’ and ‘below’ depend on the numbering
of E-components, which we have left arbitrary.
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To simplify the presentation, from now on we
shall adhere to the following convention: the com-
ponents of E are numbered in such a way that γ
increases with increasing E1. The right endpoint of
the curve R0(γ, Êγ) = 1 corresponds then to a pop-
ulation strategy γ = 1, and the left endpoint to a
population strategy γ = 0. Combined with our ear-
lier assumption about the uniqueness of the popula-
tion dynamical equilibrium conditions, this conven-
tion implies that the equilibrium curve can be rep-
resented as a monotone decreasing function from E1
to E2.

We can now draw together the results on existence
and attractivity of mixed ESSs:

Result 2.
(i) All mixed ESSs correspond to points of inter-

section of the isovalue contours m and n.
(ii) Following the numbering convention that the

components of E are numbered in such a way
that γ increases with increasing E1 along the curve
R0(γ, Êγ) = 1 ,

(a) any mixed ESS such that n crosses m from
above, corresponds to a (local) mixed CSS, and

(b) any mixed ESS such that n crosses m from
below, corresponds to a mixed ESR.

If the components of E are numbered in the oppo-
site way, the m and n just switch roles.

In many concrete examples the isovalue contours
m and n are simply linear. In that case we have the
following classification of the possible outcomes of
the adaptive dynamics:

Result 3. For linear isovalue contours m and n,
either of the following three statements applies:

(i) there exists a unique mixed global CSS (i.e. a
globally attractive mixed ESS); or

(ii) there exists a unique mixed ESR (i.e. a re-
pelling ESS), and both pure strategies are local CSSs;
or

(iii) no mixed ESS exists, and either one or the
other pure strategy is a global CSS.

Figure 3 illustrates these scenarios.
We have now demonstrated that a two- or higher-

dimensional environment allows mixed CSSs. Below
we consider a more concrete example to get some
insight into the ecological situations in which we may
expect mixed strategies to occur.

(b) An example

We make an explicit assumption about the form of
density dependence in the population dynamics: the
population regulation is assumed to take place by a
reduction of age-specific survival probabilities or fe-
cundities. To assure that the population dynamics
has a point attractor in a largish range of parameter
space, we use a Beverton–Holt-type density depen-
dence. For the environmental condition E we take a
linear combination of the densities of individuals en-
tering age classes one and two, before mortality takes
place,

(E1, E2) := (f1γN1 + f2N2, (1− γ)N1).

The ecological interpretation is that the two age
classes differ in resource usage or predators. The dy-
namics that we have in mind can be written as

N1(t+ 1) =
s0[f1γN1(t) + f2N2(t)]

1 + α11E1(t) + α12E2(t)
, (8)

N2(t+ 1) =
s1(1− γ)N1(t)

1 + α21E1(t) + α22E2(t)
, (9)

where αij (> 0) denotes the relative competitive ef-
fect of age j individuals to age class i; high relative
values mean high impact. For simplicity we call the α
competitive effects even though they may represent
only apparent competition. We assume that at least
α11 > 0 so that the dynamics will have a non-trivial
attractor for all γ. We introduce some notational con-
ventions to simplify the presentation of the results,

∆ := s1f2 − f1,

which is a measure for the difference in the reproduc-
tive ratio in the virgin environment of those maturing
at age two and one, and

φ := s0f1 − 1 > 0,

which is just a rescaled measure for the basic repro-
ductive ratio in the virgin environment of those ma-
turing at age one.

The derivation of CSS maturation strategies goes
now in a similar way as in the previous section, and
we skip the details here (see Appendix 2 for the full
derivation). Note that the results apply only for pop-
ulation dynamics with stable point attractors. For
γ ≈ 0 this assumption is not fulfilled with all param-
eter combinations—see Appendix 2 for a discussion.
Here we confine ourselves to the parameter combina-
tions for which our stability assumption is fulfilled.
Result 2 implies that mixed CSSs are possible only
if α11α22 > α12α21. The CSS age at maturity is then
given by

γ∗ =



1, if ∆ 6 α21

α11
f1φ,

1 + f1
f1α21φ− α11∆

f1α22φ− α12∆
,

if − 1 < f1
f1α21φ− α11∆

f1α22φ− α12∆
< 0,

0, otherwise.

(10)

If α11α22 < α12α21, only mixed ESRs are possible.
Now we get

γ∗ =


1 only, if ∆ 6 α21

α11
f1φ,

0 or 1, if − 1 < f1
f1α21φ− α11∆

f1α22φ− α12∆
< 0,

0 only , otherwise.
(11)

(i) No competition between age classes

In this case α21 = α12 = 0. If γ = 0, we have
two temporal populations which do not interact. The
situation in which only one temporal population is
present is necessarily unstable. Therefore we assume
that both temporal populations exist, in which case
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(a)

m

n

γ = 0 CSS

R0(γ, Eγ) = 1

E2

E1

(b)

n

m

γ = 1 CSS

R0(γ, Eγ) = 1

E2

E1

(c)

m

n

0 < γ < 1 CSS

R0(γ, Eγ) = 1

E2

E1

(d)
m

n

γ = 0 CSS
0 < γ < 1 ESR

γ = 1 CSS

R0(γ, Eγ) = 1

E2

E1

Figure 3. Four possible types of adaptive dynamics when the isovalue contours m and n are linear, and the components
of E are numbered following our numbering convention (see text or caption for figure 2 for explanations). A CSS may
be a pure strategy (a, b, d), or a mixed strategy (c). In (d) the CSS to which the adaptive dynamics is attracted will
depend on the initial conditions; the boundary case is an ESR.

all mutants face a constant environment. Then we
get

γ∗ =



1, if ∆ 6 0,

0, if ∆ > α22

α11
φ,

0 < 1− α11∆

α22φ
< 1, otherwise.

Thus, mixed strategies are evolutionarily optimal if
delaying increases the reproductive success in the
virgin environment over that of non-delayers, but
density dependence acts to equalize the realized re-
productive success of the strategies. An example il-
lustrating the dependence of CSS maturation strat-
egy on the relative reproductive successes and the
strengths of the density dependence is given in fig-
ure 4.

5. DISCUSSION

In this paper we have demonstrated that polymor-
phic age at maturity may evolve because different age
classes experience the environment in different ways,
so that the feedback environment has at least two
dimensions. Thus, neither environmental stochastic-

ity nor complicated population dynamics are neces-
sary for the evolution of mixed maturation strategies.
Our results do not void, however, the significance of
the aforementioned factors. Indeed, we have also car-
ried out numerical simulations with the model in § 4 b
which clearly show that both environmental stochas-
ticity and chaotic dynamics (if the Beverton–Holt-
type density dependence is replaced with the Ricker
one) may greatly promote the evolution of mixed
maturation strategies: a mixed strategy is an ESS
for a large part of the parameter space in which the
deterministic analysis predicts pure strategies.

This study was inspired by the opossum shrimp
Mysis relicta, which frequently shows polymorphic
age at maturity (Hakala 1979; Morgan 1980). Our
general results offer an explanation for the poly-
morphic behaviour in the opossum shrimp. A two-
dimensional feedback environment may be realized
by differences in resource usage or predators be-
tween age or size classes. Both alternatives are fea-
sible in the species, taking the considerable size dif-
ferences between differently aged individuals into ac-
count (Hakala et al. 1993). The possible role of en-
vironmental stochasticity in maintaining this poly-
morphism is not clear, although the species dwells
in deep lakes under the thermocline where the envi-
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Figure 4. An example of CSS maturation strategies when
the age classes do not compete. On the x-axis lifetime
production of offspring of the delaying phenotype in-
creases relative to that of the non-delayers in the virgin
environment. On the y-axis the importance of the density
dependence in the newborns increases relative to the den-
sity dependence in the surviving adults. Other parameter
values: s0 = 0.1, f1 = 100.

ronment is rather constant. The low fecundity of the
species renders chaotic dynamics unlikely.

The concept of ideal free distributions originally
arose in the context of optimal foraging in patchy en-
vironments (Fretwell & Lucas 1970). This metaphor
is useful also in life history theory, coined as ‘repro-
ductive ideal free distribution’ by Kaitala & Getz
(1995). Life cycles can be viewed as graphs involving
different paths. Different paths may have different
expected density-dependent reproductive successes.
Individuals following an ideal free choice will choose
the path with the greatest expected reproductive suc-
cess. If the population evolves towards some proba-
bilistic path choice rule corresponding to a mixed
strategy, such a rule makes all paths equally bad in
terms of the reproductive success of all individuals.
In other words, a mixed ESS will balance the repro-
ductive success of all individuals. A pure strategy
would correspond to a situation in which one path is
better than any other, irrespective of the number of
individuals choosing it.

Frequency dependence has been a somewhat ne-
glected issue in life history theory. Early examples
include the analysis by Gross & Charnov (1980) who
studied alternative male mating strategies in fish.
Later Kaitala & Getz (1995) analysed maturation
strategies in Pacific salmon. In their model with an
assortative mating system the environment is two di-
mensional, and mixed strategies can occur. Kaitala et
al. (1997) have studied the evolution of delayed ma-
turity in a model allowing delaying more than once.
Because the feedback environment is two dimensional
in their model, only one delaying probability can be
fractional at one time.

Examples of frequency dependence flourish in
other fields of evolutionary biology. Indeed, the first
application of game theory in biology was concerned
with animal contests in which frequency dependence
played an important role (Maynard Smith & Price
1973). Some modern examples from behavioural ecol-
ogy bear a clear resemblance to the model stud-
ied here. For example, Kaitala et al. (1993) have
demonstrated maintenance of partial migration by
frequency-dependent selection: in this example, the
evolutionarily stable behavioural decision balances
the reproductive success of the migrating and resi-
dent phenotypes.

We have shown above that for linear isovalue con-
tours, one mixed CSS at the most can exist. More
than one mixed CSS may occur if isovalue contours
have a sufficiently complex curvature. However, it
is unclear whether such complex isovalue contours
can arise from biologically plausible assumptions. Ex-
amples in which simple nonlinear isovalue contours
might occur are interference between age classes and
predators with frequency-dependent prey selection.
We are not aware of any published model allowing
multiple mixed CSSs.

The adaptive dynamics in our model closely resem-
ble the population dynamics of a two species compe-
tition model. Instead of separate species, we essen-
tially study competition between two phenotypes, or
two age classes. The conditions for coexistence are
similar (e.g. Renshaw 1991): in a one-dimensional en-
vironment, coexistence is an exceptional case; in a
two-dimensional environment, coexistence can occur
if intraspecific (intraphenotypic) competition is more
severe than interspecific (interphenotypic) competi-
tion.

Finally, we would like to emphasize a few points
made in this paper. First, the dimensionality of the
environment is important for evolutionary consider-
ations. Modelling efforts confined to one-dimensional
steady-state environments or density-independent
optimization criteria are deemed to miss the possi-
bility of phenotypic polymorphisms. Models invoking
frequency-dependent selection are inherently multi-
dimensional. Second, not only is dimensionality im-
portant, but also the way population regulation takes
place. If all individuals experience the density depen-
dence in a similar manner, regardless of their pheno-
type, only monomorphisms are expected. And finally,
explicit consideration of the dimensionality of the
feedback environment provides further insight into
any system under study.

We thank H. Salemaa for drawing our attention to the
peculiar life cycle of Mysis relicta. M.H. thanks the staff
of IEEW for the inspiring atmosphere and the hospital-
ity during his stay there, and the Academy of Finland,
the University of Helsinki and the ERASMUS exchange
programme for financial support.

APPENDIX 1. ROBUSTNESS OF RESULT 1

A mixed ESS occurs in a one-dimensional envi-
ronment, if both pure strategies have the expected
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reproductive success equal to one. This occurs only
if the curves s̃−1, f̃1 and s̃1f̃2 have a common point of
intersection. Here s̃−1 is a decreasing function of the
environmental condition E, or a constant at most. In
a similar manner, f̃1 and s̃1f̃2 are decreasing func-
tions of the environmental condition E, or constants
at most (either s̃−1 or f̃1 and s̃1f̃2 can be constant
at one time).

Now assume that the feedback environment is in
reality higher dimensional, but effectively confined to
a narrow tube around a one-dimensional curve in a
higher-dimensional space. In this case the curves s̃−1,
f̃1 and s̃1f̃2 are replaced by narrow bands. As an ex-
ample we may think of a noisy environment. A mixed
ESS is only possible if the three narrow bands inter-
sect. Therefore, for ‘almost one-dimensional’ environ-
ments a mixed ESS remains effectively a borderline
case.

APPENDIX 2. DERIVATION OF
EQUATIONS (10)–(11)

If a mixed strategy γ∗ is an ESS, all rare mutants
will have equal growth rates in a steady-state envi-
ronment set by the resident strategy, Eγ∗ . In partic-
ular, R0(0, Eγ∗) = R0(1, Eγ∗) = 1. Provided that at
least α12α21 6= 0 or α11α22 6= 0, these equations have
a solution

γ∗ = 1 + f1
f1α21φ− α11∆

f1α22φ− α12∆

if − 1 < f1
f1α21φ− α11∆

f1α22φ− α12∆
< 0. (12)

The test for evolutionary attractivity (result 2) is
now simple. The isovalue contour functions m and n
are m(E1) = (s0f1 − α11E1 − 1)/α12 and n(E1) =
((s1f2/f1) − α21E1 − 1)/α22. These functions yield
the test,

If α11α22

{
>
<

α12α21, γ∗ is
{

a CSS,
an ESR. (13)

The interpretation of this test is straightforward:
if within-age-class competition is more severe than
between-age-class competition, a mixed ESS is also
a CSS.

Next we derive conditions under which pure strate-
gies are CSSs. First consider the situation in which
all individuals in the population mature at age one
(γ = 1). The equilibrium population size is

N̂ = N̂1 =
φ

α11f1
.

The sufficient condition for a successful invasion of
mutants maturing at age two (γ = 0) is that

R0(0, Eγ̂) > 1⇔ ∆ >
α21

α11
f1φ. (14)

When all individuals delay maturation (γ = 0),
there are two temporally separated populations,
which still interact if α12α21 is positive. For certain
parameter values the resulting dynamics gives rise
to two year cycles, a situation similar to that studied
by Nisbet & Onyiah (1994). This may occur also for

small positive γ. Moreover, for other parameter val-
ues the amplitude of the cycles may depend on the
initial conditions. For yet other parameter values one
temporal population excludes the other.

Even if the dynamics are stable for γ = 0, the pop-
ulation dynamical equilibrium for equations (8)–(9)
is a root of a third-order polynomial, and too com-
plicated to be of any use in invasion considerations.
However, using the result 3, we can still draw the full
picture of the adaptive dynamics. We have two dif-
ferent scenarios, depending on whether the attractiv-
ity test (13) fails or not. Combining the information
given by equations (12) and (14) with result 3, we
get equations (10)–(11).
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